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Part IV: Complexity of 
problems and algorithms

Fundamental issues of computation

A successful search for better and better algorithms naturally leads to the question "Is there a best algorithm?",  

whereas an unsuccessful search leads one to ask apprehensively: "Is there any algorithm (of a certain type) to solve 

this problem?" These questions turned out to be difficult and fertile. Historically, the question about the existence 

of an algorithm came first, and led to the concepts of computability and decidability in the 1930s. The question  

about a "best" algorithm led to the development of complexity theory in the 1960s.

The  study  of  these  fundamental  issues  of  computation  requires  a  mathematical  arsenal  that  includes 

mathematical  logic,  discrete  mathematics,  probability  theory,  and  certain  parts  of  analysis,  in  particular  

asymptotics.  We  introduce  a  few  of  these  topics,  mostly  by  example,  and  illustrate  the  use  of  mathematical  

techniques of algorithm analysis on the important problem of sorting.
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15. Computability and 
complexity

Learning objectives:

• algorithm

• computability

• RISC: Reduced Instruction Set Computer

• Almost nothing is computable.

• The halting problem is undecidable.

• complexity of algorithms and problems

• Strassen's matrix multiplication

Models of computation: the ultimate RISC

Algorithm and computability are originally intuitive concepts. They can remain intuitive as long as we only want  

to show that some specific result can be computed by following a specific algorithm. Almost always an informal  

explanation  suffices  to  convince  someone  with  the  requisite  background  that  a  given  algorithm  computes  a 

specified result. We have illustrated this informal approach throughout Part III. Everything changes if we wish to 

show that a desired result is not computable. The question arises immediately: "What tools are we allowed to use?" 

Everything is computable with the help of an oracle that knows the answers to all questions. The attempt to prove  

negative  results  about  the  nonexistence  of  certain  algorithms  forces  us  to  agree  on  a  rigorous  definition  of  

algorithm.

The question "What can be computed by an algorithm, and what cannot?"  was studied intensively during the 

1930s  by  Emil  Post  (1897–1954),  Alan  Turing  (1912–1954),  Alonzo  Church  (1903),  and  other  logicians.  They 

defined  various  formal  models  of  computation,  such  as  production  systems,  Turing  machines,  and  recursive 

functions, to capture the intuitive concept of "computation by the application of precise rules". All these different 

formal models of computation turned out to be equivalent. This fact greatly strengthens Church's thesis that the 

intuitive concept of algorithm is formalized correctly by any one of these mathematical systems.

We will not define any of these standard models of computation. They all share the trait that they were designed  

to be conceptually simple: their primitive operations are chosen to be as weak as possible, as long as they retain  

their  property  of  being  universal  computing  systems  in  the  sense  that  they  can  simulate  any  computation 

performed on any other machine. It usually comes as a surprise to novices that the set of primitives of a universal  

computing machine can be so simple as long as these machines possess two essential  ingredients:  unbounded 

memory and unbounded time.

Most simulations of a powerful computer on a simple one share three characteristics: it is straightforward in 

principle,  it  involves  laborious  coding  in  practice,  and  it  explodes  the  space  and  time  requirements  of  a  
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computation. The weakness of the primitives, desirable from a theoretical point of view, has the consequence that  

as simple an operation as integer addition becomes an exercise in programming.

The model of computation used most often in algorithm analysis is significantly more powerful than a Turing 

machine in two respects: (1) its memory is not a tape, but an array, and (2) in one primitive operation it can deal  

with numbers of arbitrary size. This model of computation is called random access machine, abbreviated as RAM. 

A RAM is essentially a random access memory, also abbreviated as RAM, of unbounded capacity, as suggested in 

Exhibit 15.1. The memory consists of an infinite array of memory cells, addressed 0, 1, 2, … . Each cell can hold a  

number, say an integer, of arbitrary size, as the arrow pointing to the right suggests.

Exhibit 15.1: RAM - unbounded address space, unbounded cell size.

A RAM has an arithmetic unit and is driven by a program. The meaning of the word random is that any memory 

cell can be accessed in unit time (as opposed to a tape memory, say, where access time depends on distance). A  

further crucial  assumption in the RAM model is  that  an arithmetic operation (+,  –, ·,  /)  also takes unit  time, 

regardless of the size of the numbers involved. This assumption is unrealistic in a computation where numbers may  

grow very large, but often is a useful assumption. As is the case with all models, the responsibility for using them  

properly lies with the user. To give the reader the flavor of  a model of  computation, we define a RAM whose  

architecture is rather similar to real computers, but is unrealistically simple.

The ultimate RISC

RISC stands for  Reduced Instruction Set Computer, a machine that has only a few types of instructions built 

into the hardware. What is the minimum number of instructions a computer needs to be universal? In theory, one.

Consider a stored-program computer of the "von Neumann type" where data and program are stored in the  

same memory (John von Neumann, 1903–1957). Let the random access memory (RAM) be "doubly infinite": There 

is a countable infinity of memory cells addressed 0, 1, … , each of which can hold an integer of arbitrary size, or an  

instruction.  We assume that  the constant 1  is  hardwired into memory cell  1;  from 1 any other integer can be 

constructed.  There  is  a  single  type  of  "three-address  instruction"  which  we  call  "subtract,  test  and  jump", 

abbreviated as

STJ  x, y, z

where x, y, and z are addresses. Its semantics is equivalent to

STJ  x, y, z   ⇔   x := x – y;  if  x ≤ 0  then  goto z;

x, y, and z refer to cells Cx, Cy, and Cz. The contents of Cx and Cy are treated as data (an integer); the contents of 

Cz, as an instruction (Exhibit 15.2).
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Exhibit 15.2: Stored program computer: data and instructions share the memory.

Since this RISC has just one type of instruction, we waste no space on an op-code field. An instruction contains 

three addresses, each of which is an unbounded integer. In theory, fortunately, three unbounded integers can be 

packed into the same space required for a single unbounded integer. In the following exercise, this simple idea 

leads to a well-known technique introduced into mathematical logic by Kurt Gödel (1906 – 1978).

Exercise: Gödel numbering

(a) Motel Infinity has a countable infinity of rooms numbered 0, 1, 2, … . Every room is occupied, so the sign  

claims "No Vacancy". Convince the manager that there is room for one more person.

(b) Assume that a memory cell in our RISC stores an integer as a sign bit followed by a sequence d0, d1, d2, … of 

decimal digits, least significant first. Devise a scheme for storing three addresses in one cell.

(c) Show how a sequence of positive integers i1, i2, … , in of arbitrary length n can be encoded in a single natural 

number j: Given j, the sequence can be uniquely reconstructed. Gödel's solution:

Basic program fragments

This  computer  is  best  understood  by  considering  program  fragments  for  simple  tasks.  These  fragments 

implement simple operations, such as setting a variable to a given constant, or the assignment operator, that are  

given as primitives in most programming languages. Programming these fragments naturally leads us to introduce 

basic concepts of assembly language, in particular symbolic and relative addressing.

Set the content of cell 0 to 0:

STJ  0, 0, .+1

Whatever the current content of cell 0, subtract it from itself to obtain the integer 0. This instruction resides at  

some address in memory, which we abbreviate as '.', read as "the current value of the program counter". '.+1' is the  

next address, so regardless of the outcome of the test, control flows to the next instruction in memory.

a := b, where a and b are symbolic addresses. Use a temporary variable t:

STJ  t, t, .+1 { t := 0 }

STJ  t, b, .+1 { t := –b }

STJ  a, a, .+1 { a := 0 }

STJ  a, t, .+1 { a := –t, so now a = b }

Exercise: a program library

(a) Write RISC programs for a:= b + c, a := b · c, a := b div c, a := b mod c, a := |b|, a : = min(b, c), a := gcd(b,  

c).
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(b) Show how this RISC can compute with rational numbers represented by a pair [a, b] of integers denoting  

numerator and denominator.

(c) (Advanced) Show that this RISC is universal, in the sense that it can simulate any computation done by any  

other computer.

The exercise of building up a RISC program library for elementary functions provides the same experience as the  

equivalent exercise for Turing machines, but leads to the goal much faster, since the primitive STJ is much more 

powerful than the primitives of a Turing machine.

The purpose of this  section is  to introduce the idea that conceptually simple models of  computation are as  

powerful, in theory, as much more complex models, such as a high-level programming language. The next two  

sections demonstrate results of an opposite nature: Universal computers, in the sense we have just introduced, are 

subject to striking limitations, even if we remove any limit on the memory and time they may use. We prove the 

existence of noncomputable functions and show that the "halting problem" is undecidable.

The theory of computability was developed in the 1930s, and greatly expanded in the 1950s and 1960s. Its basic  

ideas have become part of the foundation that any computer scientist is expected to know. Computability theory is  

not  directly  useful.  It  is  based  on  the  concept  "computable  in  principle"  but  offers  no  concept  of  a  "feasible  

computation".  Feasibility,  rather  than "possible in  principle",  is  the touchstone of  computer science.  Since the 

1960s, a theory of the complexity of computation is being developed, with the goal of partitioning the range of  

computability  into  complexity  classes  according  to  time  and  space  requirements.  This  theory  is  still  in  full 

development and breaking new ground, in particular in the area of concurrent computation. We have used some of 

its concepts throughout Part III and continue to illustrate these ideas with simple examples and surprising results.

Almost nothing is computable

Consider  as  a  model  of  computation  any  programming  language,  with  the  fictitious  feature  that  it  is 

implemented  on  a  machine  with  infinite  memory  and  no  operational  time  limits.  Nevertheless  we  reach  the 

conclusion that "almost nothing is computable".  This follows simply from the observation that there are fewer 

programs than problems to be solved (functions to be computed). Both the number of programs and the number of  

functions are infinite, but the latter is an infinity of higher cardinality.

A programming language L is defined over an alphabet A= {a1, a2, … , ak} of k characters. The set of programs in 

L is  a  subset  of  the set  A∗  of  all  strings  over A.  A∗  is  countable,  and so is  its  subset  L,  as  it  is  in one-to-one 

correspondence with the natural numbers under the following mapping:

1. Generate all strings in A∗  in order of increasing length and, in case of equal length, in lexicographic order.

2. Erase all strings that do not represent a program according to the syntax rules of L.

3. Enumerate the remaining strings in the originally given order.

Among all programs in L we consider only those which compute a (partial) function from the set N = {1, 2, 3, …} 

of natural numbers into N. This can be recognized by their heading; for example,

function f(x: N): N;

As this is a subset of L, there exist only countably many such programs.

However, there are uncountably many functions f: N → N, as Georg Cantor (1845–1918) proved by his famous 

diagonalization argument. It starts by assuming the opposite, that the set {f | f: N →  N} is countable, then derives 
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a contradiction. If there were only a countable number of such functions, we could enumerate all of them according 

to the following scheme:

f1(1)f1 f1(2) f1(3) f1(4)

f2(1) f2(3) f2(4)f2(2)f2

f3 f3(1) f3(3) f3(4)f3(2)

1 2 3 4

.

.

.

. . .

f4 f4(1) f4(3) f4(4)f4(2)

Construct a function g:  N → N, g(i) = fi(i) + 1, which is obtained by adding 1 to the diagonal elements in the 

scheme above. Hence g is different from each fi, at least for the argument i: g(i) ≠ fi(i). Therefore, our assumption 

that we have enumerated all functions f: N → N is wrong. Since there exists only a countable infinity of programs, 

but an uncountable infinity of functions, almost all functions are noncomputable.

The halting problem is undecidable

If we could predict, for any program P executed on any data set D, whether P terminates or not (i.e. whether it  

will get into an infinite loop), we would have an interesting and useful technique. If this prediction were based on 

rules that prescribe exactly how the pair (P, D) is to be tested, we could write a program H for it. A fundamental  

result of computability theory states that under reasonable assumptions about the model of computation, such a 

halting program H cannot exist.

Consider a programming language L that contains the constructs we will use: mainly recursive procedures and  

procedure parameters. Consider all procedures P in L that have no parameters, a property that can be recognized  

from the heading

procedure P;

This simplifies the problem by avoiding any data dependency of termination.

Assume that there exists a program H in L that takes as argument any parameterless procedure P in L and 

decides whether P halts or loops (i.e. runs indefinitely):

Consider the behavior of the following parameterless procedure X:

procedure X;

begin  while  H(X)  do;  end; 

Consider the reference of X to itself;  this  trick corresponds to the diagonalization in the previous example.  

Consider further the loop

while  H(X)  do;

which is infinite if H(X) returns true (i.e. exactly when X should halt) and terminates if H(X) returns false (i.e. 

exactly when X should run forever). This trick corresponds to the change of the diagonal g(i) = f i(i) + 1. We obtain:
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By definition of X: By construction of X:

The fiendishly crafted program X traps H in a web of contradictions. We blame the weakest link in the chain of  

reasoning  that  leads  to  this  contradiction,  namely  the  unsupported  assumption  of  the  existence  of  a  halting  

program H. This proves that the halting problem is undecidable.

Computable, yet unknown

In the preceding two sections we have illustrated the limitations of computability: clearly stated questions, such 

as the halting problem, are undecidable. This means that the halting question cannot be answered, in general, by 

any  computation  no matter  how extensive  in  time and  space.  There  are,  of  course,  lots  of  individual  halting 

questions that can be answered, asserting that a particular program running on a particular data set terminates, or  

fails to do so. To illuminate this key concept of theoretical computer science further, the following examples will  

highlight a different type of practical limitation of computability.

Computable or decidable is a concept that naturally involves  one algorithm and a  denumerably infinite set of 

problems, indexed by a parameter, say n. Is there a uniform procedure that will solve any one problem in the  

infinite set? For example, the "question" (really a denumerable infinity of questions) "Can a given integer n > 2 be 

expressed as the sum of two primes?" is decidable because there exists the algorithm 's2p' that will answer any 

single instance of this question:

procedure s2p(n: integer): boolean;

{ for n>2, s2p(n) returns true if n is the sum of two primes,

false otherwise }

function p(k: integer): integer;

{ for k>0, p(k) returns the k-th prime: p(1) = 2, p(2) = 3, p(3) 

= 5, … }

end;

begin

for all i, j such that p(i) < n and p(j )< n do

if  p(i) + p(j) = n  then  return(true);

return(false);

end;  { s2p }

So the general question "Is any given integer the sum of two primes?" is solved readily by a simple program. A 

single related question, however, is much harder: "Is every even integer >2 the sum of two primes?" Let's try:

4 = 2 + 2, 6 = 3 + 3,  8 = 5 + 3,  10 = 7 + 3 = 5 + 5,  12 = 7 + 5,

14 = 11 + 3 = 7 + 7,  16 = 13 + 3 = 11 + 5,  18 = 13 + 5 = 11 + 7,

20 = 17 + 3 = 13 + 7,  22 = 19 + 3 = 17 + 5 = 11 + 11, 

24 = 19 + 5 = 17 + 7 = 13 + 11,  26 = 23 + 3 = 21 + 5 = 19 + 7 = 13 + 13,

28 = 23 + 5 = 17 + 11,  30 = 23 + 7 = 19 + 11 = 17 + 13,

32 = 29 + 3 = 19 + 13,  34 = 31 + 3 = 29 + 5 = 23 + 11 = 17 + 17,

36 = 33 + 3 = 31 + 5 = 29 + 7 = 23 + 13 = 19 + 17.
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A bit of experimentation suggests that the number of distinct representations as a sum of two primes increases  

as  the  target  integer  grows.  Christian  Goldbach  (1690–1764)  had  the  good  fortune  of  stating  the  plausible 

conjecture "yes" to a problem so hard that it has defied proof or counterexample for three centuries.

One might ask: Is the Goldbach conjecture decidable? The straight answer is that the concept of decidability  

does not apply to a single yes/no question such as Goldbach's conjecture. Asking for an algorithm that tells us  

whether  the  conjecture  is  true  or  false  is  meaninglessly  trivial.  Of  course,  there  is  such  an  algorithm!  If  the 

Goldbach conjecture is true, the algorithm that says 'yes' decides. If the conjecture is false, the algorithm that says  

'no' will do the job. The problem that we  don't know which algorithm is the right one is quite compatible with 

saying that  one of those  two is  the right  algorithm.  If  we package  two trivial  algorithms into one,  we get  the 

following trivial algorithm for deciding Goldbach's conjecture:

function GoldbachOracle(): boolean:

begin  return(GoldbachIsRight)  end;

Notice that  'GoldbachOracle'  is  a function without arguments,  and 'GoldbachIsRight'  is  a boolean constant, 

either true or false. Occasionally, the stark triviality of the argument above is concealed so cleverly under technical 

jargon as to sound profound. Watch out to see through the following plot.

Let us call an even integer > 2 that is not a sum of two primes a counterexample. None have been found as yet, 

but we can certainly reason about them, whether they exist or not. Define the

function G(k: cardinal): boolean;

as follows:

Goldbach's conjecture is equivalent to G(0) = true. The (implausible) rival conjecture that there is exactly one  

counterexample is equivalent to G(0) = false, G(1) = true. Although we do not know the value of G(k) for any single  

k, the definition of G tells us a lot about this artificial function, namely: 

if G(i) = true for any i, then G(k) = true for all k > i.

With such a strong monotonicity property, how can G look? 

1. If Goldbach is right, then G is a constant: G(k) = true for all k.

2. If there are a finite number i of exceptions, then G is a step function: 

G(k) = false for k < i, G(k) = true for k ≥ i.

3. If there is an infinite number of exceptions, then G is again a constant: 

G(k) = false for all k.

Each of the infinitely many functions listed above is obviously computable. Hence G is computable. The value of  

G(0) determines truth or falsity of Goldbach's conjecture. Does that help us settle this time-honored mathematical  

puzzle? Obviously not. All we have done is to rephrase the honest statement with which we started this section, 

"The answer is yes or no, but I don't know which" by the circuitous "The answer can be obtained by evaluating a 

computable function, but I don't know which one". 
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Multiplication of complex numbers

Let us turn our attention from noncomputable functions and undecidable problems to very simple functions that 

are obviously computable, and ask about their complexity: How many primitive operations must be executed in  

evaluating a specific function? As an example, consider arithmetic operations on real numbers to be primitive, and 

consider the product z of two complex numbers x and y:

x = x1 + i · x2 and y = y1 + i · y2,

x · y = z = z1 + i · z2.

The complex product is defined in terms of operations on real numbers as follows:

z1 = x1 · y1 – x2 · y2,

z2 = x1 · y2 + x2 · y1.

It  appears  that  one  complex  multiplication  requires  four  real  multiplications  and  two  real  

additions/subtractions. Surprisingly, it turns out that multiplications can be traded for additions. We first compute  

three intermediate variables using one multiplication for each, and then obtain z by additions and subtractions:

p1 = (x1 + x2) · (y1 + y2),

p2 = x1 · y1,

p3 = x2 · y2,

z1 = p2 – p3, z2 = p1 – p2 – p3.

This evaluation of the complex product requires only 3 real multiplications, but 5 real additions / subtractions.  

This  trade  of  one  multiplication for  three additions may  not  look  like  a  good deal  in  practice,  because  many 

computers have arithmetic chips with fast multiplication circuitry. In theory, however, the trade is clearly favorable. 

The cost of  an addition grows linearly in the number of  digits,  whereas the cost of  a multiplication using the 

standard method grows quadratically. The key idea behind this algorithm is that "linear combinations of k products  

of sums can generate more than k products of simple terms". Let us exploit this idea in a context where it makes a  

real difference.

Complexity of matrix multiplication

The complexity of an algorithm is given by its time and space requirements. Time is usually measured by the 

number of operations executed, space by the number of variables needed at any one time (for input, intermediate 

results, and output). For a given algorithm it is often easy to count the number of operations performed in the worst  

and in the best case; it is usually difficult to determine the average number of operations performed (i.e. averaged 

over all possible input data). Practical algorithms often have time complexities of the order O(log n), O(n2), O(n · 

log n), O(n2), and space complexity of the order O(n), where n measures the size of the input data.

The complexity of a problem is defined as the minimal complexity of all algorithms that solve this problem. It is 

almost always difficult to determine the complexity of a problem, since all possible algorithms must be considered,  

including those yet unknown. This may lead to surprising results that disprove obvious assumptions.

The complexity of an algorithm is an upper bound for the complexity of the problem solved by this algorithm.  

An algorithm is a witness for the assertion: You need at most this many operations to solve this problem. A specific  

algorithm never provides a lower bound on the complexity of a problem— it cannot extinguish the hope for a more 

efficient algorithm. Occasionally, algorithm designers engage in races lasting decades that result in (theoretically) 

faster and faster algorithms for solving a given problem. Volker Strassen started such a race with his 1969 paper  

142



This book is licensed under a Creative Commons Attribution 3.0 License

"Gaussian  Elimination  Is  Not  Optimal"  [Str  69],  where  he  showed  that  matrix  multiplication  requires  fewer 

operations than had commonly been assumed necessary. The race has not yet ended.

The obvious way to multiply two n × n matrices uses three nested loops, each of which is iterated n times, as we  

saw in a transitive hull algorithm in the chapter, “Matrices and graphs: transitive closure”. The fact that the obvious 

algorithm  for  matrix  multiplication  is  of  time  complexity  Θ(n3),  however,  does  not  imply  that  the  matrix 

multiplication problem is of the same complexity.

Strassen's matrix multiplication

The standard algorithm for multiplying two n  × n matrices needs n3 scalar multiplications and n2 ·  (n – 1) 

additions; for the case of 2  × 2 matrices, eight multiplications and four additions. Seven scalar multiplications 

suffice if we accept 18 additions/subtractions.

Evaluate seven expressions, each of which is a product of sums:

p1 = (a11 + a22) · (b11 + b22),

p2 = (a21 + a22) · b11

p3 = a11 · (b12 – b22)

p4 = a22 · (–b11 + b21) p5 = (a11 + a12) · b22

p6 = (–a11 + a21) · (b11 + b12)p7 = (a12 – a22) · (b21 + b22).

The elements of the product matrix are computed as follows:

r11 = p1 + p4 – p5 + p7,

r12 = p3 + p5,

r21 = p2 + p4, r22 = p1 – p2 + p3 + p6.

This algorithm does not rely on the commutativity of scalar multiplication. Hence it can be generalized to n × n 

matrices using the divide-and-conquer principle. For reasons of simplicity consider n to be a power of 2 (i.e. n = 2 k); 

for other values of n, imagine padding the matrices with rows and columns of zeros up to the next power of 2. An n  

× n matrix is partitioned into four n/2 × n/2 matrices:

The product  of  two n  × n matrices by Strassen's method requires  seven (not  eight)  multiplications and 18 

additions/subtractions of n/2  × n/2 matrices.  For large n, the work required for the 18 additions is  negligible 

compared to the work required for even a single multiplication (why?); thus we have saved one multiplication out of 

eight, asymptotically at no cost.

Each n/2  × n/2 matrix is again partitioned recursively into four n/4  × n/4 matrices; after log2 n partitioning 

steps we arrive at 1  × 1 matrices for which matrix multiplication is the primitive scalar multiplication. Let T(n) 

denote the number of scalar arithmetic operations used by Strassen's method for multiplying two n × n matrices. 

For n > 1, T(n) obeys the recursive equation
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If we are only interested in the leading term of the solution, the constants 7 and 2 justify omitting the quadratic  

term, thus obtaining

Thus the number of primitive operations required to multiply two n  × n matrices using Strassen's method is 

proportional to n2.81, a statement that we abbreviate as "Strassen's matrix multiplication takes time Θ(n2.81)".

Does this asymptotic improvement lead to a more efficient program in practice? Probably not, as the ratio

grows too slowly to be of practical importance: For n ≈ 1000, for example, we have 5√1024 = 4 (remember: 210 = 

1024). A factor of 4 is not to be disdained, but there are many ways to win or lose a factor of 4. Trading an algorithm  

with  simple  code,  such  as  straightforward  matrix  multiplication,  for  another  that  requires  more  elaborate  

bookkeeping, such as Strassen's, can easily result in a fourfold increase of the constant factor that measures the 

time it takes to execute the body of the innermost loop.

Exercises

1. Prove that the set of all ordered pairs of integers is countably infinite.

2. A  recursive  function is  defined by a  finite  set  of  rules  that  specify  the function in  terms of  variables, 

nonnegative integer constants, increment ('+1'), the function itself, or an expression built from these by  

composition of functions. As an example, consider Ackermann's function defined as A(n) = An(n) for n ≥ 1, 

where Ak(n) is determined by

Ak(1) = 2 for k ≥ 1

A1(n) = A1(n–1) + 2 for n ≥ 2

Ak(n) = Ak–1(Ak(n–1)) for k ≥ 2

(a) Calculate A(1) , A(2) , A(3), A(4).

(b) Prove that

Ak(2) = 4 for k ≥ 1,

A1(n) = 2·n for n ≥ 1,

A2(n) = 2n for n ≥ 1,

A3(n) = 2A
3

(n–1) for n ≥ 2.

(c) Define the inverse of Ackermann's function as

α(n) = min{m: A(m) ≥ n}.

 Show that α(n) ≤ 3 for n ≤ 16, that α(n) ≤ 4 for n at most a "tower" of 65536 2's, and that α(n) → ∞ as n 

→ ∞.
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3. Complete Strassen's algorithm by showing how to multiply n × n matrices when n is not an exact power of 

2.

4. Assume that you can multiply 3 × 3 matrices using k multiplications. What is the largest k that will lead to 

an asymptotic improvement over Strassen's algorithm?

5. A permutation matrix P is an n × n matrix that has exactly one '1' in each row and each column; all other 

entries are '0'. A permutation matrix can be represented by an array

var a: array[1 .. n] of integer;

as follows: a[i] = j if the i-th row of P contains a '1' in the j-th column.

6. Prove that the product of two permutation matrices is again a permutation matrix.

7. Design  an  algorithm  that  multiplies  in  time  Θ(n)  two  permutation  matrices  given  in  the  array 

representation above, and stores the result in this same array representation.
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